

Radiolabeled Europium Loaded Theranostic Liposomal Nanoparticles for Effective Radioisotope induced Photodynamic Therapy

Hyung-Jun Im, MD, PhD

Wooseung Lee, Miyeon Jeon, Jinyeong Choi, Chiwoo Oh, and Hyung-Jun Im*

Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea

Anti-Cancer Therapy using Light Along with Photosensitizer (Triggering ROS)

To Overcome the Limitation of Conventional PDT

Introduction

 Europium (Eu)
Victoria blue-BO (VBBO) = Photosensitizer (PS) RL: Radioluminescence RET: RL energy transfer ROS: Reactive oxygen species

Scheme of Synthesis

Characteristics of Eu / PS Loaded Theranostic Liposomal Nanoparticles

Results

50 nm

Stability tests in different physiological conditions (λex= 640 nm) (λex= 615 nm) (λex= 550 nm) Eu/VBBO lipo Eu lipo Eu/RB lipo Eu/Ce6 lipo

Left: PBS, middle: human serum, and right: RPMI

0.2 um

In vivo Radioisotope Induced PDT

Eu/VBBO lipo

⁶⁴Cu-VBBO lipo

⁶⁴Cu-Eu/VBBO lipo

⁶⁴Cu-Eu/VBBO lipo : Eu / PS Loaded Theranostic Liposomal Nanoparticles for PDT

- Chelated Eu³⁺ ion and photosensitizer (PS) loaded liposome by Self-assembly method
- Long blood pool circulation ($t_{1/2}$ = 20.15 hrs) and High passive targeting efficiency (~ 20 %ID/g)

⁶⁴Cu-Eu/VBBO lipo vs. ⁶⁴Cu-VBBO lipo

- RET showed higher efficiency than CLET
- Higher in vitro ROS generation and in vitro / in vivo PDT effects than ⁶⁴Cu-VBBO-lipo (based on CLET)

⁶⁴Cu-Eu/VBBO lipo could be a promising nanomedicine for

a Novel Radioluminescence induced PDT using Radioisotope

Acknowledgements

Prof. Hyung-Jun Im <u>Wooseung Lee</u> Miyeon Jeon Chiwoo Oh Jinyeong Choi Gaeun Kim Seungki Baek **Department of Nuclear Medicine, Seoul National University**

Prof. Keon Wook Kang Prof. Gi Jeong Cheon Prof. Yun-Sang Lee

SEOUL NATIONAL UNIVERSITY

Thank you for your attention

